首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48618篇
  免费   4921篇
  国内免费   2989篇
工业技术   56528篇
  2024年   95篇
  2023年   715篇
  2022年   1093篇
  2021年   1457篇
  2020年   1564篇
  2019年   1375篇
  2018年   1260篇
  2017年   1550篇
  2016年   1691篇
  2015年   1845篇
  2014年   3175篇
  2013年   2952篇
  2012年   3682篇
  2011年   3715篇
  2010年   2722篇
  2009年   2841篇
  2008年   2364篇
  2007年   2966篇
  2006年   2776篇
  2005年   2560篇
  2004年   2173篇
  2003年   1835篇
  2002年   1568篇
  2001年   1413篇
  2000年   1274篇
  1999年   975篇
  1998年   779篇
  1997年   724篇
  1996年   606篇
  1995年   553篇
  1994年   437篇
  1993年   360篇
  1992年   311篇
  1991年   200篇
  1990年   202篇
  1989年   180篇
  1988年   93篇
  1987年   66篇
  1986年   52篇
  1985年   60篇
  1984年   53篇
  1983年   36篇
  1982年   68篇
  1981年   19篇
  1980年   20篇
  1977年   8篇
  1976年   12篇
  1975年   8篇
  1959年   12篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
2.
气藏平均地层压力跟踪计算新方法   总被引:1,自引:0,他引:1  
平均地层压力是产能评价和动态分析的基础,准确、快速获取平均地层压力对高效开发气藏意义重大。基于地层压力随时间变化的规律,分析了平均地层压力的变化规律。研究结果表明:平均地层压力等效点仅随时间发生改变,平均地层压力的下降速率等于或者近似等于井底流压的下降速率。从封闭弹性驱动气藏的物质平衡方程出发,考虑偏差系数和井底流压随平均地层压力的变化,推导建立了平均地层压力跟踪计算新方法,根据生产数据可迭代计算平均地层压力。方法验证结果显示,采气速度和采出程度共同影响模型的计算结果。应用实例表明,跟踪计算法与压力恢复试井和物质平衡法之间的相对误差均较小,满足工程计算精度要求,且跟踪计算法不需依托生产测试数据,节约了测试费用,避免了测试占产。  相似文献   
3.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
4.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
5.
This review classifies drug-design strategies successfully implemented in the development of histone deacetylase (HDAC) inhibitors, which have many applications including cancer treatment. Our focus is on especially demanded selective HDAC inhibitors and their structure-activity relationships in relation to corresponding protein structures. The main part of the paper is divided into six subsections each narrating how optimization of one of six structural features can influence inhibitor selectivity. It starts with the impact of the zinc binding group on selectivity, continues with the optimization of the linker placed in the substrate binding tunnel as well as the adjustment of the cap group interacting with the surface of the protein, and ends with the addition of groups targeting class-specific sub-pockets: the side-pocket-, lower-pocket- and foot-pocket-targeting groups. The review is rounded off with a conclusion and an outlook on the future of HDAC inhibitor design.  相似文献   
6.
A recent commentary by Santhosh and Ravindran on our paper (Int. J. Hydrogen Energy 2014, 39:10,606) demonstrated that the interaction between H2 and MXene (Sc2C and Ti2C) phases are not Kubas-type and should be of weak physisorption, and thus made a conclusion that 2D Sc2C and Ti2C are not suitable for practical hydrogen storage applications. In this responses, we recalculated hydrogen adsorption on 2D Sc2C and Ti2C by using different exchange-correlation functionals. And based on the calculated results, bare MXenes (especially the Ti2C) are suitable as hydrogen storage materials at temperatures of several tens degrees lower than room temperature. And the hydrogen adsorptions on the MXenes terminated with oxygen group were also investigated. Among the Ti2C, Sc2C and their oxygen-functional counterparts, the binding energy of H2 on Sc2CO2 surface is the closest to the ideal range of 0.16–0.42 eV/H2 at ambient conditions, and thus the Sc2C with oxygen group is expected to be more suitable as hydrogen storage materials.  相似文献   
7.
Fe(III) ion can strongly inhibit the sulphidation amine flotation of smithsonite. However, its modification mechanism on smithsonite surface is still obscure. In this work, a systematic study of the modification of Fe(III) ion on smithsonite (1 0 1) surface was performed using DFT calculation. The optimal number of H2O ligands for Fe(III) ion hydrates in aqueous conditions was probed, and [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? were identified as the major modification species, then their adsorption and bonding mechanisms were further revealed by analyzing the frontier orbitals, density of state, Mulliken population, and electron density. The calculated adsorption structures were consistent with the former experiment, and we found the O site that bonded to the C atom on smithsonite surface was the most favorable position for [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? adsorptions. Besides, their adsorption mechanisms on smithsonite surface were principally due to the combined effect of FeO bond and hydrogen bonding. Simultaneously, hydrogen bonding greatly enhanced the stability of the adsorption structures. Moreover, the dominant orbital contribution for the bonding of FeO was primarily due to the orbital hybridization between Fe 3d and O 2p orbitals. This work can help in deeper understanding of the depression of Fe(III) ion on the sulphidation amine flotation of smithsonite.  相似文献   
8.
In this study, first-principles calculations were performed to investigate the catalytic effect of NiN4-G on the dehydrogenation of MgH2. Side-on MgH2 can be adsorbed stably on the NiN4-G monolayer and is preferentially adsorbed on the NiN4 site compared with the graphene site. The hydrogen desorption process, in which MgH2 dissociated to the Mg atom on the NiN4 site or graphene site and an H2 molecule in the vacuum, should overcome lower barriers than pure MgH2. This is because the corresponding Mg–H bond is weakened owing to the electron transfer between the Mg atom and the substrate. The hydrogen desorption enthalpies of the (MgH2)5 cluster on the NiN4 active and graphene sites are significantly smaller (0.11 eV and 1.50 eV, respectively) when H2+H2 is released from the cluster compared with those of the undoped MgH2 cluster (2.48 eV). Therefore, the NiN4-G monolayer can provide the double effect of the NiN4 active and graphene sites on improving the dehydrogenation performance of MgH2.  相似文献   
9.
Metal–organic framework (MOF) membranes are promising for efficient separation applications. However, the uncontrollable pathways at atomic level impede the further development of these membranes for molecular separation. Herein we show that vapor linker exchange can induce partial amorphization of MOF membranes and then reduce their transport pathways for precisely molecular sieving. Through exchanging MOF linkers by incoming ones with similar topology but higher acidity, the resulted metal-linker bonds with lower strength cause the transformation of MOF membranes from order to disorder/amorphous. The linker exchange and partial amorphization can narrow intrinsic apertures and conglutinate grain boundary/crack defects of membranes. Because of the formation of ultra-microporous amorphous phase, the MOF composite membrane shows competitive H2/CO2 selectivity up to 2400, which is about two orders of magnitude higher than that of conventional MOF membranes, accompanied by high H2 permeance of 13.4 × 10−8 mol m−2 s−1 Pa−1 and good reproducibility and stability.  相似文献   
10.
The construction of heterostructure is an effective strategy to synergetically couple wide-band-gap with the narrow-band-gap semiconductor with a mediate optical property and charge transfer capability. Herein, the Z-Scheme CdS/ZnSnO3 (CdS/ZSO) heterostructures were constructed by anchoring CdS nanoparticles on the surface of double-shell hollow cubic ZnSnO3 via the hydrothermal method. The direct recombination of excited electrons in the conduction band (CB) of ZSO and holes in the valence band (VB) of CdS via d-p conjugation at the interface greatly accelerated the internal electric field (IEF). The transfer mode follows the Z-Scheme mechanism, where CdS/ZSO synergistically facilitates the efficient charges transfer from CdS to ZnSnO3 through the intimate interface. Here, ZnSnO3 and CdS serve as an oxidation photocatalyst (OP) and reduction photocatalyst (RP), respectively. Thus, it can promote synergistically the oxidation half-reaction and reduction half-reaction of H2 evolution. The density-functional theory (DFT) calculation further confirms the charges transfer from CdS to ZnSnO3. The hydrogen evolution of 5% CdS/ZSO heterostructure reached 1167.3 μmol g?1, which was about 8 and 3 folds high compared to pristine ZSO (141.9 μmol g?1) and CdS (315.5 μmol g?1), during 3 h of reaction respectively. Furthermore, the CdS/ZSO heterostructures could suppress the photo corrosion of CdS, resulting in its high stability. This work is expected to enlighten the rational design of heterostructure for OP and RP to promote the hybrid heterostructures photocatalytic H2 evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号